مشتق های جردن تعمیم یافته روی جبرها و جبرهای عملگری خاص
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه کردستان - دانشکده علوم پایه
- author آنیتا هادی طالع
- adviser هوگر قهرمانی شهرام سعیدی
- Number of pages: First 15 pages
- publication year 1389
abstract
در این تحقیق فرض می شود n یک لانه روی فضای باناخ x باشد و alg n یک جبر لانه ای شرکت پذیر باشد.نشان داده می شود اگر یک عنصر غیر بدیهی در n موجود باشد به طوریکه در x تکمیل شده باشد، آنگاه هر مشتق جردن تعمیم یافته جمعی از alg n به خودش یک مشتق تعمیم یافته جمعی است. علاوه بر این شاخصی از مشتق های جردن تعمیم یافته خطی از جبرهای لانه ای روی فضای هیلبرت جدایی پذیر مختلط ارائه می شود.
similar resources
نگاشتهای نگهدارنده جفتهای عملگری باناخ روی جبرهای عملگری
فرض کنید $mathcal{B(X)}$ جبر شامل تمام عملگرهای خطی کراندار روی فضای باناخ $mathcal{X}$ و $phi:mathcal{B(X)}longrightarrow mathcal{B(X)}$ یک نگاشت جمعی دوسویی باشد که جفت عملگری باناخ را از دو طرف حفظ می کند. در این مقاله، نشان می دهیم که به ازای هر $A in mathcal{B(X)}$ و $x in mathcal{X}$، اسکالرهای $alpha , ...
full textمشتق ها و مشتق های جردن روی جبرهای باناخ
یکی از موضوعات مورد توجه در جبر و آنالیز، مفهوم مشتق و تعمیم هایی از آن روی حلقه ها و جبر های باناخ می باشد. که با توجه به آن می توان نتایجی در مورد این ساختارها بدست آورد. یکی از تعمیم های مشتق، مفهوم مشتق جردن است. هر مشتق یک مشتق جردن است اما عکس آن لزوماً برقرار نیست. این موضوع که تحت چه شرایطی هر مشتق جردن، مشتق است از مسائل مورد توجه می باشد. هراشتاین نشان داده است که روی هر حلقه اول با مش...
15 صفحه اولC*-جبرها و جبرهای کامیان-پسک تجزیه ناپذیر
فرض کنیم A یک گراف سطری- متناهی و K یک میدان است. در این مقاله، به مطالعه تجزیهپذیری جبر کامیان-پسک KP(A) و C*-جبر C*(A) متناظر با A میپردازیم. به ویژه، به کمک ویژگیهای A و گروهوار G_A ، شرایط لازم و کافی برای این تجزیهپذیری ارایه میشود. علاوه بر این نشان میدهیم در شرایط خاص میتوان جبر کامیان-پسک را بهصورت حاصلجمع مستقیم متناهی از جبرهای کامیان-پسک تجزیهناپذیر نوشت.
full textMy Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه کردستان - دانشکده علوم پایه
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023